If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18x=2
We move all terms to the left:
3x^2-18x-(2)=0
a = 3; b = -18; c = -2;
Δ = b2-4ac
Δ = -182-4·3·(-2)
Δ = 348
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{348}=\sqrt{4*87}=\sqrt{4}*\sqrt{87}=2\sqrt{87}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{87}}{2*3}=\frac{18-2\sqrt{87}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{87}}{2*3}=\frac{18+2\sqrt{87}}{6} $
| (x+6)²=0 | | |4x+12|=-6x+4 | | 15x-6=-21 | | (x+6)²=64 | | -8u+6(u-3)=-36 | | 3/8x-8/15x=2 | | 8+9-2=8x | | -3x-40+4x=80 | | 14/3x=7/6 | | W/5-3=w/4 | | 7/2=56/x | | 3(8x-2)=-54 | | 3m+6m=72 | | 2/3b+5=20−b | | y=2(7/6)-5 | | 2/3b+5=20−b | | 14/x+3=7/6 | | 9+(x+5)=9+(5+x) | | -32-5v=-5(v+4)-5 | | y^2=8y+1=0 | | 0.4x+1.5=2.2+5x | | 8.4-2x=16 | | 8=-8(-1-8v) | | 5X^2=15x+350 | | 3y+5=2y-3 | | 92(.2)+95(.3)+88(.2)+x(.3)=90 | | -7u-42=7(u+8) | | (3/4)x+1=x+(5/6) | | 1/5(15b-5)=3b-9 | | -3(u+7)=-7u-41 | | 25+0.15x=18.50+0.10x | | x*(8-2x)*2=15 |